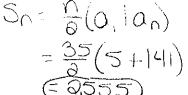


1. For the following arithmetic sequence, find the 18^{th} term of 1.4, 1.9, 2.4


$$a_{n=0,1}$$
 $(n-1)b$
=1,4+ $(n-1).5$ = 1.4 +.5n-.5 = .5n+.9

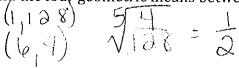
2. Find the three arithmetic means between 2 and 5.

3. Find the sum of the first 35 terms of the arithmetic sequence when $a_1 = 5$ and d = 4

$$S_n = \frac{1}{9}(a_1 + a_n)$$

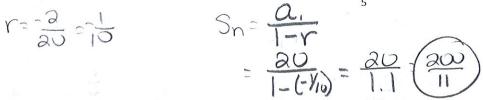
= $\frac{34}{5}(5 + 71) = 17(76) = 129a$

- 5. Evaluate: $\sum_{n=1}^{4} (2n-7)$ O(3n-7) = -5 O(3n-7) = -3 O(3n-7) = -3 O(3n-7) = -3 O(3n-7) = -3 O(3n-7) = -3
- 6. Find the sixth term of the geometric sequence: $1, \frac{3}{4}, \frac{9}{16}$

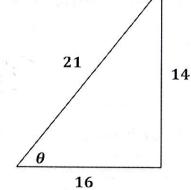

7. Find the sixth term of the geometric sequence if $a_1 = 48$ and r = -2 $Q_{10} = 48(-2)^{5} = 48(-2)^{5} = 48(-32)$

$$a_n=a_1(r)^{n-1}$$

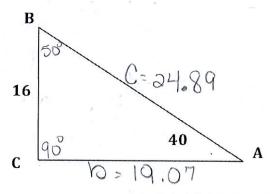
8. Find the 8th term of the geometric sequence when $a_1 = 9$ and r = -2


$$Q_8 = 9(-a)^7$$
 $Q_8 = -1152$

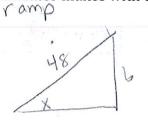
9. Find the four geometric means between 128 and 4.


0. Find the sum of the first five terms of the geometric series: $\frac{1}{3} + 2 + 12 + \cdots$
σ . Find the sum of the first five terms of the geometric series: $\frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \cdots$
$S_0 = \frac{Q_1(1-r)}{3} = \frac{1}{3}(1-\frac{1}{3}) + \frac{1}{3}(1-\frac{1}{7776})$
won of water and an arrangement of the state
1. Find the sum of the infinite geometric series, if it exists. $\sum_{n=1}^{\infty} 2k$ = (1535 or 518.3)
L' &
2 4 (a)
Liberty Des 1101 extes

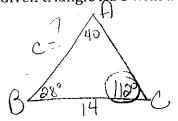
Find the sum of the infinite geometric series, if it exists: $20 - 2 + \frac{1}{5} - \cdots$



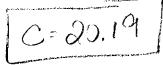
13. Find the six trigonometric functions for the given triangle:


$$\cos \theta = \frac{14}{21} = \frac{8}{3} = \frac{8}{7} = \frac{8}{7} = \frac{14}{21} = \frac{8}{7} = \frac{14}{16} = \frac{8}{7} = \frac{14}{7} = \frac{14}$$

14. Find all the missing angle and side measures for the right triangle:

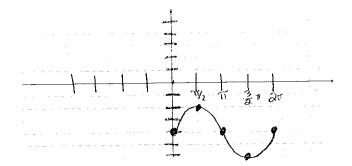


15. A ramp in a park is 48 feet long and rises 6 feet. Estimate the angle to the nearest tenth that the escalator makes with the ground.



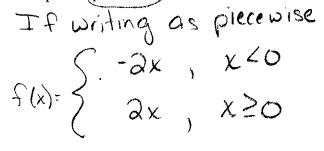
$$5in \times = \frac{6}{48}$$
 $1 \times = 7.18^{\circ}$

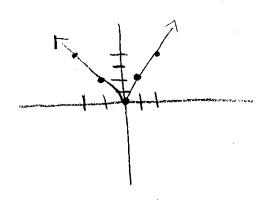

16. Given triangle $\triangle BC$ with a = 14, A = 40°, and B = 28°, what is the measure of c?

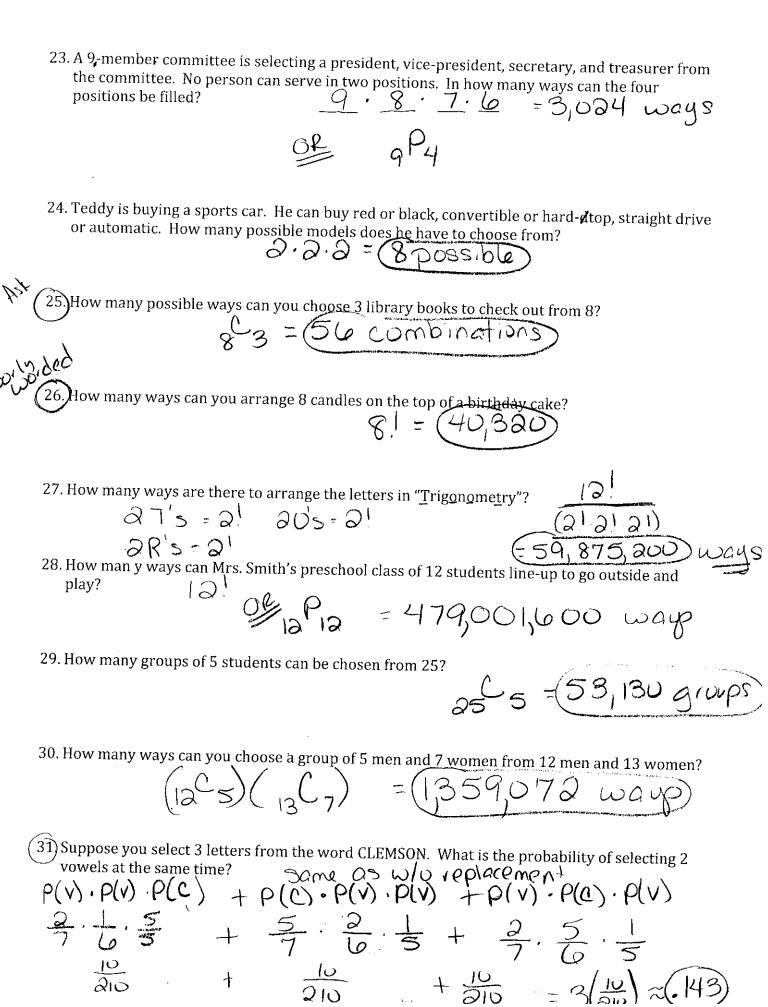


17. Graph $y = 2 \sin \theta - 4$

18. State the amplitude, period, vertical shift, and horizontal shift for: $y = 6 \sin(4\theta) + 5$


For questions 19 – 21, use the following information: On a normal curve, the mean on the Algebra II 68%, 95%, 99.790 Final is 54, with a standard deviation of 11.8


19. What percent of students are within 2 standard deviations of the mean?



19. What percent of students are within 2 standard deviations $\frac{95\%}{3.5}$ $\frac{34}{34}$ $\frac{34}{34}$ $\frac{34}{35}$ $\frac{35}{377.6}$ $\frac{35}{39}$ $\frac{35}{39}$

22. Graph the piecewise function: y = |2x|

- 32. A bag contains 8 orange marbles and 5 purple marbles. If a marble is chosen at a random, what is the probability that it is not purple? $P(\text{not purple}) = \frac{8}{13} = 665$
- $\sqrt{33}$ Billy breaks his piggy bank and finds 5 pennies, 8 nickels, and 9 dimes. What is the probability that he will selection 1 dime and 1 nickel at the same time?

$$P(D) \cdot P(N) + P(N) \cdot P(D)$$

$$\frac{9}{80} \cdot \frac{8}{21} + \frac{8}{20} \cdot \frac{9}{21} = \frac{72}{400} + \frac{72}{400} = 2\left(\frac{72}{402}\right) = \frac{312}{34}$$
What is the probability he will select 2 pennies at the same time?

$$\frac{5}{30} \cdot \frac{4}{31} = \frac{20}{402} = 0.043$$

35. A die is thrown twice. What is the probability that a 4 is thrown followed by a 6? $P(4) \cdot P(1) = \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{310} = .007$

For questions 36 – 38, 12 playing cards (3 Aces, 4 Kings, 2 Queens, and 3 Jacks) are placed on the table face down. If four cards are selected at random, find the probability that:

- 36. You select Ace, Jack, King, King, without replacement. $\frac{P(A) \cdot P(B)}{3} \cdot \frac{3}{11} \cdot \frac{4}{10} \cdot \frac{3}{3} = \sqrt{0.091}$
- 37. You select a Queen, King, Jack, Ace, with replacement. $P(J) \cdot P(K) \cdot P(J) \cdot P(A)$ $\frac{\partial}{\partial a} \cdot \frac{\partial}{\partial a} \cdot \frac$
- 38. You select Queen, Queen, Ace, any card other than Ace, without replacement. P(G)P(G)P(A)P(A)P(A)

- 39. Find the value of $_{6}P_{4}$.
- (40.) Find the standard deviation for the given data: 5, 6, 8, 11, 10

a) 3.28 b) 1.28 c) 2.28 d) 4.28
$$S_X$$
 is for a sample = 2.55

Describe the end behavior for both functions for 41.

$$41. f(x^2) = 1 - 2x^2 - x^3$$

- a. As $x \to \infty$, $f(x) \to -\infty$. As $x \to -\infty$, $f(x) \to \infty$.
 - b. As $x \to \infty$, $f(x) \to -\infty$. As $x \to -\infty$, $f(x) \to -\infty$.
 - c. As $x \to \infty$, $f(x) \to \infty$. As $x \to -\infty$, $f(x) \to -\infty$.
 - d. As $x \to \infty$, $f(x) \to \infty$. As $x \to -\infty$, $f(x) \to \infty$.

$$h(x) = -2x^4$$

- a. As $x \to \infty$, $h(x) \to -\infty$. As $x \to -\infty$, $h(x) \to \infty$.
- b. As $x \to \infty$, $h(x) \to \infty$. As $x \to -\infty$, $h(x) \to \infty$.
- C.) As $x \to \infty$, $h(x) \to -\infty$. As $x \to -\infty$, $h(x) \to -\infty$.
 - d. As $x \to \infty$, $h(x) \to \infty$. As $x \to -\infty$, $h(x) \to -\infty$.

42. Solve:
$$\frac{x+9}{x+8} = \frac{x-7}{x-6}$$
 b) $x = 0$

(x+q)(x-10) = (x+8)(x-7) $x^2+3x-54=x^2+x-510$ 2x=-2 x=0

Evaluate: log_9729

b) 5

c) 4

d) 2

44. Evaluate: log 94

a) 9.4

b) 1.97

- c) .51
- d) 3.95

(45) Solve $e^{4x} = 5.7$ for x to four decimal places.

a) -0.4030

- c) 0.7559
- d) -0.7559

 $46. \log_9(x^2 + 7) = \log_9(43)$

$$\chi^2 + 7 = 43$$

a) ± 36

- c) ± 6.56
- d) ±5

- $\ln(-2y+5) \ln(y+4) = \ln(-11y-2)$
- b) infinite solutions

- In 24+5 = In (-114-2)
- c) (3.68, .32) d) no solution -2y + 5 = (-11y 2)(y + 4) $-2y + 5 = -11y^2 4(6y 8)$

48. Radioactive Iodine-129 decays over time into stable Xenon-129. The percent of I-129 remaining in several mineral samples can be used to calculate the radioactive half-life of I-129, based on the ages of the mineral samples determined by other "dating" techniques. The following table shows data on the percent of I-129 remaining in minerals of different ages.

Age (billions of years)	2.0	3.5	4.2	4.3
Percent of original I-	74	59	53	52
129				

- a. Find the regression equation for the percent of I-129 remaining as a function of time x.
- b. Write the regression equation in terms of base e.
- c. Use the equation from part b to estimate the half-life of Iodine-129.

a. a. y =	$100 \times$	$(0.854)^{8}$
-----------	--------------	---------------

b.
$$y = 100e^{-0.158x}$$

c.
$$x = 3.2$$
 billion years

b. **a.**
$$y = 100 \times (0.858)^x$$

b.
$$y = 100e^{-0.153x}$$

c.
$$x = 3.3$$
 billion years

d. a.
$$y = 100 \times (0.858)^{x}$$

b. $y = 100e^{-0.133x}$
c. $x = 4.5$ billion years

a. $y = 100 \times (0.854)^x$ b. $y = 100e^{-0.158x}$

c. x = 4.4 billion years

49. Find an exponential function to model the data.

	3
1	7
2	16
3	30
4	61
5	124
6	271
7	522

a)
$$f(x) = 116.4 - 42.8 \ln x$$

b) $f(x) = 2.204 (3.56)^x$
c) $f(x) = 3.56(2.04)^x$
d) $f(x) = -42.8 + 116.4 \ln x$

50. Find the best fit regression model for the data according to the given model. r= .99997

X	T y
1	50
_ 2	140
3	260
4	400
5	560
6	750
7	925
8	1130

$$49.79x^{1.50}$$

$$\begin{array}{ccc} \mathbf{x} & 5.48x^{32} \\ \mathbf{c} & 156.13x - 175.71 \end{array}$$

$$1.5x + 3.$$

•As automobiles age, the average miles traveled per gallon decreases. Determine the regression equation that best models the data.

A A CO ((En ro))	A MINIO
1	35
3	34
5	33
7	31
9	28
11	· 26
13	23
15	18

 $a = 2n^2 - 2n - 1$

 $y = \frac{3}{2}\sin\left(\frac{x}{12} + 3\right) - 1$

a) Power
$$r = -.797$$

- Logarithmic Quadratic 995 Exponential 949

 $= a_2 + 2(2)$ = 3 + 4 = 7

53. Which function has an amplitude that is twice the size and a period that is three times the size of the function
$$y = 3\cos\left(\frac{x}{4} - 1\right) + 2$$
 $\frac{2\pi}{16} = 8\pi$

$$(A) y - 6\sin\left(\frac{x}{12} - 3\right) + 1$$

$$(A) y - 3\cos\left(\frac{3x}{4} - 1\right) - 3$$

$$(A) y - 3\cos\left(\frac{3x}{4} - 1\right) - 3$$

$$(A) y - 6\cos\left(\frac{3x}{4} - 1\right) - 3$$