Quadratic Functions: EOC Prep

Spring 2013

Directions: The following questions are sample items similar to those found on the EOC Exam. Answer each to the best of your ability.

1. The function $f(t) = -5t^2 + 20t + 60$ models the approximate height of an object t seconds after it is launched. How many seconds does it take the object to hit the ground? = solution = x-int. = root = zero

$$-5t^2+20t+60=0$$

-5($t^2-4t-12$)=0

$$t=0$$
 $t=0$
 $t=-2$
 $t=0$
 $t=0$
 $t=0$

2. What is the smallest of 3 consecutive positive integers if the product of the smaller two integers is 5 less than 5 times the largest integer?

$$157 \times 2^{nd} = 5 \times 3^{rd} - 5$$
 $(X-5)(X+1) = 0$
 $(X)(X+1) = 5(X+2) - 5$ $X-5=0$ $X+1=0$
 $X^2 + X = 5 \times + 10 - 5$ $X=-1$
 $X^2 + X = 5 \times + 5$
 $X^2 - 4 \times - 5 = 0$ $X=5$
 $X=5$ $X=-1$
 $X=5$ Answer must be positive

3. The larger leg of a right triangle is 3 cm longer than its smaller leg. The hypotenuse is 6 cm longer than the smaller leg. How many centimeters long is the smaller leg? Q2 + 12 = C2

Small: X
Large:
$$x+3$$

Hypot: $x+6$
 $x^2 + (x+3)^2 = (x+6)^2$
 $x^2 + (x+3)(x+3) = (x+6)(x+6)$
 $x^2 + (x+3)(x+3) = (x+6)(x+6)$
 $x^2 + (x+3)(x+3) = (x+6)^2$
 $x^2 + (x+3)^2 = (x+6)^2$
 $x^2 + (x+3)(x+3) = (x+6)(x+6)$
 $x^2 + (x+3)(x+6) = (x+6)(x+6)$
 $x^2 + (x+3)(x+6) = (x+6)(x+6)$
 $x^2 + (x+3)(x+6) = (x+6)(x+6)$
 $x^2 + (x+6)(x+6) = (x+6)(x+6)$

4. Which term is a factor of $3a^2 + 12a$?

X = -3/2

5. Which graph displays the function f(x)=(2x+3)(x-2)?

Α

C

graph is facing UP

Roots:

X=-1.5

"a" is

positive so

The floor of a rectangular cage has a length 4 feet greater than its width, w. James will increase both dimensions of the floor by 2 feet. Which equation represents the new area, N, of the floor of the cage?

$$A \qquad N = w^2 + 4w$$

$$B \qquad N = w^2 + 6w$$

$$N = w^2 + 6w + 8$$

$$N = w^2 + 8w + 12$$

Length: W+4+2 = W+6 Width: W+2

A = Length x width

A= (w+6)(w+2)

A= W2+8W+12

Which expression is equivalent to t^2 – 36?

A
$$(t-6)(t-6)$$

(b)
$$(t+6)(t-6)$$

C
$$(t-12)(t-3)$$

D
$$(t-12)(t+3)$$

+2

Which is the graph of the function $f(x) = 4x^2 - 8x + 7$? 8.

y-intercept

С

0

- 9. Suppose that the equation $V = 20.8x^2 458.3x + 3,500$ represents the value of a car from 1964 to 2002. What year did the car have the <u>least</u> value?
 - (x = 0 in 1964)

$$(=-b) = -(-458.3)$$
 $2(20.8)$

10 The number of bacteria in a culture can be modeled by the function $N(t) = 28t^2 - 30t + 160$, where t is the temperature, in degrees Celsius, the culture is being kept. A scientist wants to have fewer than 200 bacteria in a culture in order to test a medicine effectively. What is the approximate domain of temperatures that will keep the number of bacteria under 200?

A
$$^{-}1.01^{\circ}\text{C} < t < 2.03^{\circ}\text{C}$$
 29t -3

B
$$^{-}0.90^{\circ}\text{C} < t < 1.97^{\circ}\text{C}$$

C
$$^{-}0.86$$
°C < t < 1.93°C

D
$$^{-}0.77^{\circ}\text{C} < t < 1.85^{\circ}\text{C}$$

11. Which equation has exactly one real solution?

$$A 4x^2 - 12x - 9 = 0$$

(B)
$$4x^2 + 12x + 9 = 0$$

C
$$4x^2 - 6x - 9 = 0$$

D
$$4x^2 + 6x + 9 = 0$$

12. The sum of two numbers is 24. The sum of the squares of the two numbers is 306. What is the product of the two numbers?

B 128
$$(X^2+U^2=$$

$$x^2 + y^2 = 300$$
 $x^2 + (24 - x)(24 - x) = 300$ $(x - 15)(x - 9) = 0$

$$(x-15)(x-9)=0$$

2x2 - 48x + 276 = 0 13. The heights of two different projectiles after they are launched are modeled by f(x)and g(x). The function f(x) is defined as $f(x) = 16x^2 + 42x + 12$. The table contains the values for the quadratic function g.

X	g(x)
0	9
1	33
2	25

What is the approximate difference in the maximum heights achieved by the two projectiles?

14. Which expression is equivalent to
$$-3x(x-4) - 2x(x+3)$$
?

 $(1) -x^2 - 1$

- (3) $-5x^2 6x$
- -5x2+6

 $-3x^2+12-2x^2-6$

(2) $-x^2 + 18x$

(4) $-5x^2 + 6x$

(W+3)(W) = 40

15. The length of a rectangle is 3 inches more than its width. The area of the rectangle is 40 square inches. What is the length, in inches, of the rectangle? Length: W+3

W2 + 3W = 40

(1) 5

- (3) 8.5
- Width: W
- W2+3W-40=0

2 8

- (4) 11.5
- Area: LW
- (w+8\w-5)=0 W+8=0 W-5=0

16. Which expression represents $36x^2 - 100y^6$ factored completely?

W=-8 W=5

- (1) $2(9x + 25y^3)(9x 25y^3)$
- (2) $4(3x + 5y^3)(3x 5y^3)$
- 4 19x2-25y)
- can't be negative

- (3) $(6x + 10y^3)(6x 10y^3)$
- (4) $(18x + 50y^3)(18x 50y^3)$
- 4(3x-5y3)(3x+5y3)

17. What are the roots of the equation $x^2 - 5x + 6 = 0$?

- (1) 1 and -6(3) -1 and 6
- (x-2)x-3)=0 X-2=0 X-3=0

2 and 3

- (4) -2 and -3
- X=2 X=3

18. Which expression is equivalent to $64 - x^2$?

- (1) (8-x)(8-x)
- (3) (x-8)(x-8)
- (2) (8-x)(8+x)
- (4) (x-8)(x+8)

Difference of squares $X^2-y^2 = (x-y)(x+y)$

19. The equation of the axis of symmetry of the graph of $y = 2x^2 - 3x + 7$ is

(1) $x = \frac{3}{4}$

- (3) $x = \frac{3}{2}$ $x = \frac{-b}{20} = \frac{-(-3)}{2(2)} = \frac{3}{4}$

(2) $y = \frac{3}{4}$

(4) $y = \frac{3}{2}$

20. The roots of the equation $3x^2 - 27x = 0$ are

3x(x-9)=0

1 0 and 9

- (3) 0 and 3
- (2) 0 and -9(4) 0 and -3
- 3x=0 x-9=0 x=0 x=9