1. What is the greatest common factor of $15 x^{4} y^{3}-21 x^{3} y^{3}+6 x^{2} y^{2} ?$

A $\quad x^{2} y^{2}$
B $x y$
C $\quad 3 x y^{2}$
D $3 x^{2} y^{2}$
2. Simplify: $\frac{14 c^{3} d^{2}-21 c^{2} d^{3}}{14 c d^{2}}$

A $c^{2}-\frac{3 c d}{2}$

B $\quad c^{2}-\frac{3 c^{2} d}{2}$

C $c^{2}-21 c^{2} d^{2}$

D $\quad c^{2} d-\frac{3 c d}{2}$
3. Simplify: $(x+2)\left(x^{2}+2 x+3\right)$

A $\quad x^{3}+7 x+6$
B $\quad 5 x^{2}+7 x+6$
C $\quad 2 x^{3}+x^{2}+x+6$
D $\quad x^{3}+4 x^{2}+7 x+6$
4. Which binomial is a factor of $3 x^{2}+2 x-5$ ?

A $\quad 3 x-1$
B $\quad x-1$
C $3 x-5$
D $x-5$
5. What is the quotient when $\left(6 x^{4}-9 x^{2}+12 x\right)$ is divided by $3 x ?$

A $2 x^{4}-3 x^{2}+4 x$
B $\quad 2 x^{3}+6 x+4$
C $\quad 2 x^{3}+3 x+4$
D $2 x^{3}-3 x+4$
6. Which expression is a factor of $\left(6 x^{3}-13 x^{2}-28 x\right) ?$

A $\quad x-4$
B $2 x-7$
C $\quad 2 x+7$
D $3 x-4$
7. Multiply:

$$
\left(3 x^{6} y^{4}\right)^{-1}\left(3 x^{5} y^{3}\right)^{2}
$$

A $\quad-27 x^{11} y^{7}$
B $\quad-18 x^{11} y^{7}$
C $\quad 2 x^{4} y^{2}$
D $\quad 3 x^{4} y^{2}$
8. Suppose that the value, $V$, of a used machine can be calculated by using the formula $V=P\left(1-\frac{n}{20}\right)$, where $P$ represents the price of a new machine and $n$ represents the machine's age in years. A company purchased a new machine for $\$ 15,000$. The value of the machine is now $\$ 12,375$. How old is the machine?

A 1.2 years
B 3.5 years
C 4.3 years
D 5.7 years
9. To find the image length, $L$, of a 4-foot-tall object in a spherical mirror with a focal length of 2 feet, $L=4\left(\frac{2}{o-2}\right)^{2}$ can be used, where $o$ is the distance, in feet, of the object from the mirror. What is the image length of the object when it is 1.5 feet away from the mirror?

A 256 feet
B 128 feet
C 64 feet
D 32 feet
10. The following figures are created with regular pentagons. Each pentagon has a side length of one unit. $P_{1}$ is the perimeter of the first figure, $P_{2}$ is the perimeter of the second figure, and so on.

$\begin{aligned} P_{1} & =5 \\ n & =1\end{aligned}$

$P_{2}=8$

$$
n=1
$$

$n=2$


$$
P_{3}=11
$$



$$
P_{4}=14
$$

$$
\dot{n}=3
$$

$$
n=4
$$

According to this pattern, what would be the rule for the perimeter, $P_{n}$, of the $n$th figure when $n>1$ ?

A $\quad P_{n}=2 P_{n-1}-2$
B $\quad P_{n}=2 P_{n-1}+4$
C $\quad P_{n}=P_{n-1}-3$
D $\quad P_{n}=P_{n-1}+3$
11. Which expresses the total surface area (including the top and bottom) of a tower of $c$ cubes each having side length $e$ ? (do not include faces that cover each other)

$c=1$

$c=2$


A $(4 c+2) e^{2}$

B $c \cdot e^{3}$
C $\quad 6 c \cdot e^{2}$
D $4 c \cdot e^{2}$
12. The number of bacteria in an experiment can be represented by the formula $N_{t+1}=2.5 N_{t}$. In the formula, $N_{t}$ is the number of bacteria at the end of $t$ minutes, and $N_{t+1}$ is the number of bacteria at the end of $t+1$ minutes. There are 16,400 bacteria in the experiment at the end of 7 minutes. How many bacteria will be in the experiment at the end of 10 minutes?

A $\quad 23,429$
B 102,500
C 123,000
D 256,250
13. Hooke's law states that the distance a vertical spring stretches varies directly with the weight hanging from it. A spring stretches 14 inches when a 35 -pound weight is hanging from it. How much weight is needed to stretch the spring 44 inches?

A 110 pounds
B 65 pounds
C $\quad 17.6$ pounds
D $\quad 11.1$ pounds
14. When $x$ is $3, y$ is 12 . If $y$ varies directly as $x$, which equation relates $x$ and $y$ ?

A $\quad y=x+9$

B $y=15-x$

C $y=\frac{36}{x}$

D $y=4 x$
15. Suppose that $y$ varies directly as $x$, and $y=5$ when $x=2$. What is the value of $y$ when $x=7$ ?

A 2.8
B 10
C 17.5
D 35
16. Neglecting reaction time, the distance required for a car to stop is directly proportional to the square of its velocity. If a car can stop in 8.5 meters at 20 kilometers per hour, approximately how many meters are needed to stop at 50 kilometers per hour?

A 13.4
B $\quad 21.3$
C $\quad 53.1$
D $\quad 117.6$

## End of Goal 1 Sample Items

In compliance with federal law, including the provisions of Title IX of the Education Amendments of 1972, the Department of Public Instruction does not discriminate on the basis of race, sex, religion, color, national or ethnic origin, age, disability, or military service in its policies, programs, activities, admissions or employment.
Objective: 1.01
Write equivalent forms of algebraic expressions to solve problems. a) Apply the laws of exponents. b) Operate with polynomials. c) Factor polynomials.

Thinking Skill: Applying Correct Answer: D
2 Objective: 1.01
Write equivalent forms of algebraic expressions to solve problems. a) Apply the laws of exponents. b) Operate with polynomials. c) Factor polynomials.
Thinking Skill: Applying Correct Answer: A
$3 \quad$ Objective: 1.01
Write equivalent forms of algebraic expressions to solve problems. a) Apply the laws of exponents. b) Operate with polynomials. c) Factor polynomials.
Thinking Skill: Applying Correct Answer: D

## $4 \quad$ Objective: 1.01

Write equivalent forms of algebraic expressions to solve problems. a) Apply the laws of exponents. b) Operate with polynomials. c) Factor polynomials.
Thinking Skill: Applying Correct Answer: B

## $5 \quad$ Objective: 1.01

Write equivalent forms of algebraic expressions to solve problems. a) Apply the laws of exponents. b) Operate with polynomials. c) Factor polynomials.
Thinking Skill: Applying Correct Answer: D
6 Objective: 1.01
Write equivalent forms of algebraic expressions to solve problems. a) Apply the laws of exponents. b) Operate with polynomials. c) Factor polynomials.
Thinking Skill: Applying Correct Answer: B

## $7 \quad$ Objective: 1.01

Write equivalent forms of algebraic expressions to solve problems. a) Apply the laws of exponents. b) Operate with polynomials. c) Factor polynomials.
Thinking Skill: Applying Correct Answer: D
$8 \quad$ Objective: 1.02
Use formulas and algebraic expressions, including iterative and recursive forms, to model and solve problems.
Thinking Skill: Analyzing Correct Answer: B

## $9 \quad$ Objective: 1.02

Use formulas and algebraic expressions, including iterative and recursive forms, to model and solve problems.
Thinking Skill: Applying
Correct Answer: C

10

11

12

13

14

15

16

Objective: 1.02
Use formulas and algebraic expressions, including iterative and recursive forms, to model and solve problems.
Thinking Skill: Analyzing Correct Answer: D
Objective: 1.02
Use formulas and algebraic expressions, including iterative and recursive forms, to model and solve problems.
Thinking Skill: Analyzing Correct Answer: A
Objective: 1.02
Use formulas and algebraic expressions, including iterative and recursive forms, to model and solve problems.
Thinking Skill: Applying Correct Answer: D
Objective: 1.03
Model and solve problems using direct variation.
Thinking Skill: Applying Correct Answer: A
Objective: 1.03
Model and solve problems using direct variation.
Thinking Skill: Applying Correct Answer: D
Objective: 1.03
Model and solve problems using direct variation.
Thinking Skill: Applying Correct Answer: C
Objective: 1.03
Model and solve problems using direct variation.
Thinking Skill: Applying Correct Answer: C

