8th Grade Review: EOC Prep

Name: Spring 2013

Directions: The following questions are sample items similar to those found on the EOC Exam. Answer each to the best of your ability.

Alex walked 1 mile in 15 minutes. Sally walked 3,520 yards in 24 minutes. In miles per hour, how much faster did Sally walk than Alex?

(Note: 1 mile =
$$1,760$$
 yards)

2. Suppose that the function f(x) = 2x + 12 represents the cost to rent x movies a month from an internet movie club. Makayla now has \$10. How many more dollars does Makayla need to rent 7 movies next month?

- Katie and Jennifer are playing a game. 3.
 - Katie and Jennifer each started with 100 points.
 - At the end of each turn, Katie's points doubled.
 - At the end of each turn, Jennifer's points increased by 200.

At the start of which turn will Katie first have more points than Jennifer?

To the second section of the second second second	1	2	3	4	Turn	#4
Katie	100	200	400	800	10111	
Jenni Per	100	300	500	700		

4. What is the solution of the inequality $-6x - 17 \ge 8x + 25$?

(1)
$$x \ge 3$$

(3)
$$x \ge -3$$

(2)
$$x \le 3$$

(4)
$$x \le -3$$

$$2400 = \frac{4}{3}\pi r^3$$

8.3 cm

C

- Energy and mass are related by the formula $E = mc^2$. 6.
 - m is the mass of the object.
 - c is the speed of light.

Which equation finds m, given E and c?

$$A \qquad m = E - c^2$$

B
$$m = Ec^2$$

$$C m = \frac{c^2}{E}$$

$$D m = \frac{E}{c^2}$$

$$\frac{E = mc^2}{c^2}$$

$$M = \frac{E}{C^2}$$

7. Solve for
$$y$$
: $xy - d = m$

$$[1] y = \frac{m+d}{x}$$

C [3]
$$y = m + d - x$$

$$C[4] xy = m + a$$

X = (S-

8. If
$$s = \frac{2x+t}{r}$$
, then x equals

$$rs-t$$

(3)
$$2rs - t$$

S = 2x+t

$$(2) \quad \frac{rs+1}{2}$$

(4)
$$rs - 2t$$

(4)
$$rs - 2t$$
 $rs - t = 2x$

The equation $s = 2\sqrt{5x}$ can be used to estimate the speed, s, of a car in miles per hour, given the length in feet, x, of the tire marks it leaves on the ground. A car traveling 90 miles per hour came to a sudden stop. According to the equation, how long would the tire marks be for this car?